Image Quality Sorter for digiKam
Gowtham Ashok

Short Description:
When we organize a large collection of pictures, we often come across both good and bad
quality ones. These pictures can be computationally separated to provide better workflow.This

project aims to integrate Image Quality Sorting capability into digiKam, so that we can focus on
good quality pictures.

Name: Gowtham Ashok

Email Address: gwty93@gmail.com

Freenode IRC Nick: gwty

IM Service and Username: xmpp:gmail.com/Home,Username: gwty93

Location (City, Country and/or Time Zone):
Chennai,India, UTC + 5.30

Proposal Title:
To integrate sorting based on Image Quality in digiKam so that users can focus on
high quality pictures.

Motivation for Proposal

When a large collection of pictures has to be organized, many often come across obviously bad quality
pictures, along with good quality pictures.This impedes the workflow, and is frustrating, when dealing
with 10000+ pictures. https://bugs.kde.org/show bug.cgi?id=279544

This proposal seeks to alleviate this problem by separating pictures based on Image Quality.lIt is done
so, by automatically judging the quality of an image by computationally considering various
characteristics of the picture.This is analogous to the Spam Filter in GMail. It will also become easier
for digiKam users to apply filters,such as Sharpen, since some of the specific picture defects can be
found using the to-be implemented algorithm.

Project Goals:

e To conduct a Survey, asking developers and users to rate a sample set of

http://gmail.com/Home
https://bugs.kde.org/show_bug.cgi?id=279544
https://bugs.kde.org/show_bug.cgi?id=279544

pictures.

e To write an Image Quality parser, which can be tested from command-line, as a
standalone program.
To patch Scan interface to call the Image Quality Parser.
To patch Database schema and Database interface to register items through
the parser.

e To patch GUI option to turn on/off parser at scan, add Quality Labels
everywhere (special tags)

Importance of Image Quality Sorter in digiKam

Some pictures look good on the small digital camera display, but may have obvious flaws, which can be
detected computationally.Image Quality Sorter tries to separate these pictures and assign tags to them
for review later, allowing the user to focus on the determined good quality pictures first[15]. No
automatic processing is performed on the original image. The result of this project can also be used to
implement auto-enhance in digiKkam like in GNOME’s Shotwell [16].In other KDE applications,the tags
created by this project can be shared with rest of KDE through Nepomuk interface automatically. It
then can be used in Dolphin to sort images according to Quality.

No open-source image editor has implemented separation of images based on Quality.If
implemented, digiKam will be the first to do so.

Implementation Details

Algorithm to obtain Image Quality:

Image quality is a characteristic of an image which is affected by various factors, mainly Sharpness,
Noise and Compression.To obtain Image Quality, there are Full-Reference and No-Reference methods.
Since we need a reference image for the former, the proposal aims to use No-Reference method to
evaluate Image Quality.Many research papers contain techniques to measure Image Quality.
My main reference paper is [5].
Blur:
Blur is caused mainly when the camera lens is not properly focussed on an object or due to atmospheric
conditions.
This can be detected computationally by analyzing

o Fourier Spectrum

o Edges

o Fourier Statistics
Blur can be classified further into two types,

o Isotropic blur is the standard blur that occurs when the lens is out of focus in a camera.
To detect Isotropic blur, we calculate the ratio of the average edge density to the maximum edge
strength.

o Motion blur, is caused by taking pictures of fast-moving objects.

To detect Motion blur, we compare the sharpened of the image with the original image, and if a
high-degree of similarity is found, then motion blur occurs.

This proposal prioritizes detection of Isotropic blur.

The exact formulae, and detailed explanation are given in the research paper(Pages 9,10,11 [5]).
Methods specified in [6],[7] can be used to improve algorithm speed.

| have written a demo algorithm in openCV using Edges [1].

Noise:
Noise is mainly classified into
o Random

o Gaussian

o Salt-and-pepper
The amount of noise can be calculated by taking the average edge strength divided by the maximum
possible edge value of an edge, provided we first determine that noise is present.
To detect if noise is present:

1. Take each pixel, compare its intensity value. If it is very different from its neighbour pixels,
then that pixel contains noise. A threshold is set, above which noise is said to be present in the
image.

2. Construct a histogram based on the shading values of the pixels, where different types of noise
can be found.

Code to detect noise already exists in digiKam[14],but it only detects Salt-and-pepper noise using
wavelets. Efforts will be made to enable detection of Gaussian and Random noise.

Compression artifacts:
Too much compression can result in visible deterioration of quality of the picture.In this project, we
aim to detect errors caused by JPEG and JPEG2000 compression.

o High JPEG compression creates Blocking Artifacts.
For its detection, we go through the image, in 8x8 boundaries, if we find that the pixels within that
block have more or less the same intensity value, we say that the block is a Blocking Artifact.

o High JPEG2000 compression creates Ringing Artifacts.
For its detection, we go through the sharpened image, pixel by pixel, and find edge sequences
vertically and horizontally. If edge sequences of sizes between 4 and 64 pixels are found, it is a Ringing
Artifact.
The amount of artifacts present is checked with a threshold. If it exceeds the threshold, then there is
picture quality loss due to compression(Pages 6-13,[5]).

Considering all these characteristics, the image quality can be determined by applying the formula as
described in the paper(Pages 15,16,17 [5]).

Implementation of the algorithm:

The Algorithm will be written as a command-line application using OpenCV, which accepts an image
file and displays the result obtained. Any obstacles faced during the implementation of the algorithm
will be dealt with by contacting openCV developers and users on IRC(#opencv) as well as researchers by
e-mail.Implementing all of the above algorithms would take at maximum 3s for a 256x256 picture on a
Pentium IV 3GHZ machine(Page 17,[5]).

Efforts will be made to adapt it to digiKam, by

o using the existing multithreading framework in image parser, and hence allowing multiple
images to be processed at the same time.
o enabling the user to selectively choose the algorithms to be used, and hence adjust the speed
of the algorithm, depending on his needs.
The existing implementation of Noise Detection in digikam [14] using wavelets,which detects only
Salt-and-pepper noise, will be used and improved to enable detection of Random and Gaussian Noise.

Implementation[Integration into digiKam]:

When the user has enabled this feature in the settings panel,

o The Image Scanner interface will be modified to run the algorithm on each new image that
passes through it.

o The user can specify whether to pass all the albums through this algorithm or only the current

album.

Each image will be processed and stored with tags specified by the user.

The digiKam database will store the image quality obtained.

Options to enable/disable Sharpness,Noise, and Compression defect checking will be provided.

Low quality pictures are automatically assigned “Rejected” label or not depending on user

settings.

o High Image Quality pictures will be displayed initially, then the Medium Image Quality, and
then at last, the Low Image Quality Pictures.

o It will be integrated with the Maintenance tool to perform sorting in background. As this
project is CPU-intensive, number of threads can be adjusted to ensure the absence of lag while
performing other operations.

o O O O

GUI Mockup:

This mockup contains a sample of the proposed settings panel.

ImageQuality

& Enable Image Quality Testing

Speed Accuracy
Tags to Assign: Defects to Detect:
Low Quality | Loww Blur
b Isotropic Blur
Medium Quality | Medium -t ;
= Moise
High Quility High [] salt-and-Pepper
[] Assign "Rejected” Label to Low Quality Picture] Gaussian
® Current Album only & Random
- Artifact
I All albums [:? i

[Blocking Artifacts

[Ringing Artifacts

| Cancel |

Settings Panel

ot |

Light Table

#

slide Show

Kipi Plugins

,g

Management

Light Table

slide Show

Cameras
Kipi Plugins

’g

Maintenance Tool

=2 | digiKam can sort photos based on quality.
FF | Go to the settings panel, to adjust accuracy
L R o :
| and other options.

{* Scan Photos For Image Quality Evaluation

Sort photos by quality

|5can again and merge results j

Albums | Parameters | Advanced |

Search in:
|I:'| 3 Albums selected j L X
I;] People -l a

% Sort @ Cancel | #* Options <<

Testing:

A collection of pictures taken by various digikam users, will be collected, and rated on an online
survey. The scoring by other users will be hidden, and only visible to the developers of this project.This
rating will be compared with the output of this project, and will be calibrated. Tests using QTest will
be written to run unit tests and command-line applications will be written to check algorithm and
interface.

Timeline:

Upto June 17: (Pre-project research): Go through openCV libraries, write toy
programs in it.Go through the Image Parser code in digikam.Read research papers
containing algorithms to detect Image Quality.

June 17-July 4: (Algorithm Implementation) Implementation of the algorithm in
digikam, by writing a stand-alone program using openCV. Conducting survey and
getting the human rating of sample pictures.This survey will contain the test cases for
the algorithm.

July 4-July 14:(Patching the Scan Interface) The Scan interface will be modified to
make the images pass through the Scan Interface. It will also allow users to select a
certain number of pictures and pass only those to through the Algorithm.

July 14- July 24:(Assigning Tags) Tags will be added to digikam Database,and will be
fine-tuned, depending on the algorithm’s output.l plan to include a general High
Quality,Medium Quality, and Low Quality Tag, as well as more specific tags such as
Gaussian_Blur_Present depending on the quality of the final Algorithm.

July 24-July 26:(Fine Tuning Algorithm): Based on the output obtained by the Scan
Interface, the Algorithm will be improved, and if necessary, multiple algorithms may
be used, to provide a balance between speed and accuracy.

July 26- July 29:(Code Review): Reviewing code and progress. Mid-term evaluations.

July 30- August 10:(User options): Working on options to turn off/on specific
algorithms will be implemented. Parts of digikam Ul where the newly-created tags
would be useful will be patched.

August 10- August 20:(Improving Tags Support) Working on fine-tuning the tags
depending on the output obtained during working on the User options. Will
collaborate with the Tags Manager developer, if the proposal gets selected, to make
this project integrate with it.

August 20- August 30:(Multithreading Support) Code will be modified to support
multi-threading framework in digikKam. CPU and Memory usage in a single and multiple
threads will be profiled for the sample images.

August 31- September 13:(Testing) The project will be tested by users, released as a
special feature, and changes to code will be made based on their feedback. Code will
be written to core/tests which performs unit tests and command-line programs will be
written to check algorithm and interface.

September 13-September 22:(Pencils down) Cleaning up code, fixing minor bugs,
writing documentation.

September 23: Firm ‘Pencils down’ date.

September 23- October 10:(After GSoC) Efforts will be made to include this feature in
the next digiKam stable release.

Extras:

During the duration of GSoC, only if time permits,

| plan to add algorithms that compromise on accuracy for better speed.

| plan to add metadata to the image to make it visible other KDE applications

| plan to add option to modify algorithm from digiKam interface itself.

Instead of scanning the whole image, | plan to integrate this project with the face detection
tool to scan only that area containing the face.[Faster Algorithm]

o O O O

Do you have other obligations from early June to late September (school,
work, vacation, etc.)? Please note that we expect the Summer of Code to be
a full-time, 40-hr a week occupation. It is important to be clear and upfront
about other commitments that you may have during that time.

| will be working full-time on this project, and will have no classes from early June to late July.My
college starts around late July, after which | will be attending college for 4-5 hours. | intend to work
late into the evening/night to make up for the lost time.

| will be available approximately 8 hours a day,6 days a week during the coding period.

About Me:

I am Gowtham Ashok,a sophomore studying Computer Science and Engineering at Madras Institute of
Technology, Anna University,India.l come from Chennai,India.

| love programming. Apart from regular college courses and laboratories, | love to write code in my free
time. | have written a console-based C++ application[16-bit Turbo C++] in my senior year[12th grade] at
school[4], | have also written a C++ application for plagiarism detection[2], a QT C++ Application[3],a
quiz program in C and simple Android projects.] am occasionally active in programming contests[12]
[13].

I’ve been using KDE for the past 7 years and | like it a lot.] am an open source enthusiast and wish to
contribute to this community.l attended a KDE Hackfest held in Shaastra 2013, [IT Madras,have
attended various events related to FOSS, and am an active member in the FOSS Society in my college. |
have participated in Hackathons.

| use DigiKam for managing my pictures. | have a basic understanding of digikam’s codebase.| regularly
follow the digikam mailing list.| have written a patch for replacing a library.[8][9]. | have also tested
patches[10]. My junior jobs link:[11].

Given an opportunity to work on this project, | assure | will put in more than 40 hours per week and
that | do not have any other major obligations during the period of the program.l would like to work on

this project even after GSoC and put in efforts to make it available in the next stable digikam release.

I plan to improve,maintain my code and fix bugs even after the GSoC period is over.

Why am | the right person for the job?

1.

| have experience working with C++[2][4] and Qt[3]. | have done database handling with
SQLite(Database used in digikam).l have acquired knowledge of image processing after going
through various research papers, and going through digikam’s source code.

2. | am familiar with version control systems, and have used Git regularly.

3. | have experience with openCV [1], and have written a sample algorithm which returns the
amount of blur present in an image.

4. | have discussed this project and its technical implementation outline with Gilles Caulier,
maintainer of digikam,Smit Mehta,digiKam developer and a regular digikam user, Axel Krebs.

5. | have contributed to digikam by submitting patches.With the help of Gilles Caulier, | have
replaced Clapack library with Eigen3 library used in Refocus tool[8][9].In the process, | went
through CMake Documentation and contacted Eigen Developers over IRC.I also tested a patch
by Andrew Goodbody, ‘Export to jAlbum’[10].

References:

My Projects:

[1] https://github.com/gwty/amisharp

[2] https://github.com/gwty/GwtyHash

[3] https://github.com/gwty/Water-Quality-Index
[4] https://github.com/gwty/iDiary

Research Papers:

[5] www.cs.uregina.ca/Research/Techreports/2011-02.pdf
[6] stefan.winklerbros.net/Publications/icip2002.pdf
[7] 202.194.20.8/proc/ICCT2011/VOL/0080-1569464371.pdf

Bugs:

[8] https://bugs.kde.org/show_bug.cgi?id=295423
[9] https://bugs.kde.org/show_bug.cgi?id=251563
[10] https://bugs.kde.org/show_bug.cgi?id=316719
[11] http://community.kde.org/Digikam/GS0C2013

Myself:

[12] http://www.spoj.pl/users/gwty93
[13] http://community.topcoder.com/tc?module=MemberProfile&cr=23011201

Miscellanous:

https://bugs.kde.org/show_bug.cgi?id=316719
https://github.com/gwty/iDiary
https://github.com/gwty/Water-Quality-Index
https://github.com/gwty/amisharp
http://www.spoj.pl/users/gwty93
http://community.topcoder.com/tc?module=MemberProfile&cr=23011201
http://community.topcoder.com/tc?module=MemberProfile&cr=23011201
http://www.spoj.pl/users/gwty93
http://202.194.20.8/proc/ICCT2011/VOL/0080-1569464371.pdf
https://bugs.kde.org/show_bug.cgi?id=251563
https://bugs.kde.org/show_bug.cgi?id=295423
http://community.kde.org/Digikam/GSoC2013
http://stefan.winklerbros.net/Publications/icip2002.pdf
https://github.com/gwty/iDiary
http://www.cs.uregina.ca/Research/Techreports/2011-02.pdf
https://github.com/gwty/GwtyHash
http://community.topcoder.com/tc?module=MemberProfile&cr=23011201
https://github.com/gwty/Water-Quality-Index
http://202.194.20.8/proc/ICCT2011/VOL/0080-1569464371.pdf
http://community.kde.org/Digikam/GSoC2013
http://202.194.20.8/proc/ICCT2011/VOL/0080-1569464371.pdf
http://stefan.winklerbros.net/Publications/icip2002.pdf
https://bugs.kde.org/show_bug.cgi?id=251563
https://github.com/gwty/iDiary
https://github.com/gwty/amisharp
https://bugs.kde.org/show_bug.cgi?id=316719
https://bugs.kde.org/show_bug.cgi?id=295423
http://www.cs.uregina.ca/Research/Techreports/2011-02.pdf
https://github.com/gwty/GwtyHash
http://community.kde.org/Digikam/GSoC2013

[14]
https://projects.kde.org/projects/extragear/graphics/digikam/repository/revisions/master/show/libs
/dimg/filters/nr

[15]http://mail.kde.org/pipermail/digikam-users/2011-February/012238.html

[16] http://www.yorba.org/shotwell/help/edit-enhance.html

http://mail.kde.org/pipermail/digikam-users/2011-February/012238.html
https://projects.kde.org/projects/extragear/graphics/digikam/repository/revisions/master/show/libs/dimg/filters/nr
https://projects.kde.org/projects/extragear/graphics/digikam/repository/revisions/master/show/libs/dimg/filters/nr
http://www.yorba.org/shotwell/help/edit-enhance.html
http://www.yorba.org/shotwell/help/edit-enhance.html
https://projects.kde.org/projects/extragear/graphics/digikam/repository/revisions/master/show/libs/dimg/filters/nr

